ASTRONOHIA EN LAS CATACUHBAS: RSTRELLAS CON PECOLIARIDADES ESPECTRALES COMO HIEMBROS DE CULOLOS ABIERTOS

ASTRONOHY IN THE CATACOHBS: STARS WITH SPECTRAL PECOLIARITIES AS MEHBERS OF OPEN CLOSTERS

A. FEINSTEIN
Observatorio Astronomico de La Plata CONICET

Abstract

RESUAEM: Las estrellas con lineas de emision de tipos Of, WR y Be son analizadas como miembros de cumulos abiertos de acuerdo a sus datos fotométricos. De una detallada discusión se encuentra que entre las estrellas más luminosas, los objetos de tipo of son más comunes que las estrellas WR entre los miembros mas brillantes de los cúmulos abiertos. Entre 10\% y 30\% de las estrellas WR son miembros de cúmulos abiertos. Los cúmulos con estrellas of tienen sus estrellas brillantes mas luminosas que los que poseen estrellas WR. Con respecto a las estrellas Be, están fuera de la secuencia principal; los excesos de color en $\mathrm{E}(\mathrm{B}-\mathrm{V})$ del material circunestelar llegan a ser en casos extremos hasta de 0,3 magnitudes.

Abstract

The emission-line Of-, WR- and Be-type stars as members of open clusters are analyzed in particular related to their photometric data. It is found that among the high-luminosity objects, the of stars are the more common stare among the brightest members of open clusters. About 10\% to 30% of the WR stars are members of open

clusters. Those clusters with of stars have much brighter apparent sagnitude stars than those with WR-type stars. Concerning the Be stars, mostly are situated away of the main sequence; their color excesses $\mathrm{E}(\mathrm{B}-\mathrm{V})$ of the circumstellar envelope 1 s up to 0.3 magnitudes in extreme cases

1. Introduction

Most stars in galactic open clusters have normal spectral types according to the MK system, that is membership stars have absorption lines with no peculiar characteristics. However, in a few cases some stars display emission lines, suggesting the presence of a circumstellar material around them.

We will refer here to these kind of stars located in the upper part of the main sequence (MS): stars with masses greater than 10 tho. On the other hand, there are also stars with emission-line spectra in the lower MS (less than 1 Ito), which we will not discuss in this review.

Stars with emission-line spectra in the upper MS includes: Of stars, Wolf-Rayet stars (WR) and Be stars. The first two are hot and luminous objects, and among the brightest members in young open clusters. A certain number of (o-type stars with emission only in the H lines, at least $H a$, but no emission in N III or other lines, have been defined as oe stars (Conti and Leeop, 1974). A few other 0-type stars have a P-Cygni profile in the emission lines, that is a shortward displaced absorption component and a more or less undisplaced emission component (Walborn, 1973).

In next paragraphs we will discuss each type of stars related to the open clusters where they are members. It is important to notice that the best method to derive information of the characteristics of all those stars is to study the relation to the cluster where each one is located.
2. Of-type stars: characteristics.

The high temperature 0 -type stars are characterized by an optical absorption-type spectrum in which the lines of the hydrogen Balmer series, He I, He II and lons of $C, N O$ and $S i$ are visible. But the 0-type stars have a subset called of-type which have $\lambda 4686 \mathrm{He}$ II, and usually accompanied by H a emission. The emission is interpreted as an indication of a presence of a high velocity stellar wind. Walborn (1971) employed these emission features as a luminosity discriminator. Depending on the $\lambda 4634-40$ NIII emission, the of-stars are classified as $O((f)), O(f)$ and $O f$, whether $\lambda 4686$ He II is in absorption, filled in, or in emission.

This classification of the of-stars depends very much on the dispersion employed. Besides this, Walborn (1972, 1973) in a series of papers defined another type of of stars having other emission lines as $\therefore 4057$ NIV, and $\lambda 4089,4116$ Si IV. Also a few other O-type stars with emisiion in the Balmer linee are related to the Be stars (Conti and Leep, 1874).

In a catalogue of 765 0-type stars (Garmany, Conti and Chiosi, 1982), only 74 stare are clasiffied as known very early type stars. However these numbers may be changed with a more detailed spectroscopic research in fainter 0-type stars.
3. Of-tgpe stars in open clusters.

In a compilation of the of-type in young open clusters. Feinstein, Vazquez an Benvenuto (1986) analyzed the photometric and spectroscopic data for 54 of-stars belonging to 21 open clusters. It was found that all then are high-luminosity objects but slightly evolved from the ZAMS. Also, it appears that these objects are quite common in young open clusters, but more difficult to detect than the Wolf-Rayet stars.

Bol. Asoc. Arg. de Astr.

The OBV data give us the possibility to check the position of the of-stars in the photometric diagrams. In this way they are plotted in the first diagram the observed ($B-V$) color versus the ($U-B$) color (Figure 1) for the Of stars. It becomes very clear that all them are in the same reddening line, which means that they have nearly the same intrinsic color indices ($B-V$) o and ($U-B$) o. These values are in a range between -0.30 and -0.33 for ($B-V$) 0 , and between -1.06 and -1.20 for the ($U-B$) o. Therefore, the mean values for all of stars result. $\langle(B-V) 0\rangle=-0.32 \pm 0.015$ and $\langle(U-B ; 0\rangle=-1.155 \pm 0.054$. In Figure 2 the intrinsic color index versus the magnitude absolute diagram is presented.

 iadicated.

In order to compare the location of the Of stars in the $H R$ diagram to the theoretical models for large mass stars, the effective temperature Teff and the bolometric correction $B C$ were computed with the Schmidt-Kaler's tables (1982). In the paper of Feinstein et al. (1986) the log Teff and Mool for (of stars are listed. These values are plotted in Figure 3, where the theoretical ZAMS according to Maeder (1984) is also drawn. Meader computed these models with moderate mass loss. The right border of the main sequence band suggested by Maeder is also indicated. The "wide" of the main sequence depends very much of the initial mass of the stars, and becomes much wider for masses in the range 60 mo to 120 mo .

From Figure 3 the masses of the of stars would correspond to values between 20 and 170 solar masses, if they would be on the main sequence. Mass loss eventually would reduce the star b masses by an amount of 20 to 30%.

The distribution of the Of-stars in the HR diagrams suggests that they have already evolved from the ZAMS (Feinstein et al., 1986), and in all cases the open clusters having stars with of characteristice should not be older thn $5.5 \times 10^{8} \mathrm{yr}$.

It is expected that the number of of-type stars would
increase in the future if spectroscopic research in fainter and bluer open clusters having 0 stars will be more detailed classified.

Appendix A					
Of-type stars as members of open clusters					
Cluster	Name	V	B-V	U-B	S. Type
IC1805	15558	7.81	0.52	-0.56	05III (f)
	15570	8.10	0.70	-0.40	0419
	15629	8.42	0.43	-0.62	05V((f))
IC1848	17505	7.06	0.40	-0.64	06.5V((f))
	17603	8.45	0.65	-0.42	07.5Ib(f)
IC2944	101131	7.16	0.05	-0.88	06V(f))
	101190	7.32	0.06	-0.83	06V((f))
	101205	6.48	0.07	-0.82	$07 \mathrm{IIn}(\mathrm{f})$)
	101223	8.08	0.17	-0.72	08V((f))
	101298	8.07	0.09	-0.82	06V((f))
NGC2244	46150	6.76	0.13	-0.82	05V((P$)$)
	46223	7.28	0.22	-0.77	04V((f))
NGC2264	47839	4.67	-0.25	-1.06	07V((f)
NGC2467	64568	9.39	0.11	-0.86	03V((f*))
CR228	93130	8.04	0.27	-0.71	06III(f)
	93222	8.08	0.08	-0.84	07III((f))
	93632	8.39	0.29	-0.73	04III(f)
TR14	93128	8.84	0.25	-0.74	
	93129AB	6.97	0.16	-0.78	03If*
	93160	7.82	0.17	-0.77	06III(f)
	93161	7.82	0.21	-0.70	06.5V((f))
	$-58^{\circ} 2620$	9.40	0.17	-0.75	06.5V((f))
TR16	93250	7.37	0.16	-0.85	03V((f))
	303308	8.17	0.12	-0.84	03V((f))
	$-59^{\circ} 2600$	8.61	0.21	-0.78	06 V ((f) $)$
	$-59^{\circ} 2603$	8.77	0.14	-0.79	07V((f))
	112	9.29	0.32	-0.72	$04.5 \mathrm{~V}($ (f))
TR18	97434	8.08	0.13	-0.82	07.5III(n)((f))
C1715-387	LSS4067	11.16	1.54	0.37	04 f
	6	11.64	1.54	0.35	059
NGC6183	150135	6.89	0.17	-0.80	06.5V((f))
	150136	5.62	0.16	-0.79	05III: n (f)
$\begin{aligned} & \text { HOGG22 } \\ & \text { NGC6231 } \end{aligned}$	150958	7.29	0.32	-0.66	$06.51 \mathrm{a}(\mathrm{n}) \mathrm{f}+$
	151804	5.22	0.07	-0.84	081 af
	152233	6.56	0.14	-0.80	06III: (f)p
	152248	6.16	0.12	-0.82	07Ib: n)(f)p
	152408	5.77	0.14	-0.75	08:Iafpe
	326331	7.71	0.14	-0.75	07.5IIIn((f))
NGC6334	156738	9.36	0.90	-0.14	06.5III(f)
	319699	9.63	0.80	-0.24	05V((f))
	319702	10.16	0.93	-0.12	$08111($ (f))
	319703A	10.71	1.14	0.04	07.5III((f))

Bol. Asoc. Arg. de Astr.

Appendix A (cont.)

NGC6530	164794	5.97	0.03	-0.91	$04 V((f))$
NGC6604	167971	7.50	0.77	-0.38	$08 I b(f) p$
	168112	8.52	0.69	-0.40	$05 I I I(f)$
NGC6611	168075	8.76	0.45	-0.69	$06 V((f))$
	168076	8.20	0.46	-0.70	$04 V((f))$
	$-133^{\circ} 4927$	9.53	0.84	-0.32	$07 I b(f)$
NGC6823	186980	9.97	0.69	-0.42	$07.5 I I I((f))$
	+2303782	9.34	0.56	-0.52	$07 V((f))$
NGC6871	$180429 A$	6.61	0.16	-0.80	$04 I f+$
	190864	7.76	0.20	-0.78	$06.5 I I I(f)$
NGC6913	192639	7.11	0.35	-0.63	$07 I b(f)$
	193514	7.38	0.45	-0.51	$07 I b(f)$

4- WR stars: characteristics.

The Wolf-Rayet spectra are dominated by $s t r o n g$ and broad enission lines. These emission lines correspond to ions of He, N, C and 0 , on a continuous spectra. They are classified in two groups according to the lines which appeared in the spectra: a) the WN stars in which the emission lines of ions of $H e$ and N dominated, and b) the WC stars in which ions of He, C and 0 are seen. Absorption lines are generally not visible in both types, with the exception of very few WN stars. Both classes, WN and WC, seem to differ in composition from one another, the $W N$ have more N and the $W C$ more C and $(1$, than the other class. Also, these groups can be ordered in sequences with numerical subtypes, but there is no evidence that these sequences correspond to a monotonic change in any physical parameter, like Teff or log g (see Abbott and Conti, 1987).

From the strong emission lines it is expected that these stars have significant mass loss, which suggests that there are in a post main sequence state of evolution, perhaps evolving from a massive star.

An analysis of the WR stare in open clusters and assoclations was presented by Lundstrom and Stenholm (LS) (1984), who concluded that 10% to 30% of the galactic WR are probably membere of open clusters and a larger number are members of OB ascociations. About 157 WR are classified in our Galaxy (van den Hucht et al., 1988). Their membership to open elusters are not always clear due to the fact that their magnitudes and colore are very much altered by the influence of the strong emission lines. which introduce difficultios in locating them in the color-magnitude diagram. A narrow-band photometric system, defined specially for these stars, has been started to apply by Smith (1968), and later by other authors. With this method it is possible to derive their intrinsic parameters.

LS listed 15 WR stars as members or probably members of open clusters, but this number increased to about 21 WR in a more recent paper of van den Hucht et al. (1988). However, there are a few more which would be dubious members of open clusters.

Comparing in Figure 4 the open clusters having of stars with those with WR stars, those clusters with of stare have much brighter apparent magnitude stars than clusters with WR stars. Therefore, it becomes evident that the young open clusters with WR stars, but without of objects have more interstellar absorption than those having both type of stars, or only of objects. This could be explained by a selection effect due to the difficulty of detecting of stars in faint or more distant clusters. It appears obvious that stars with WR characteristics are easier to found, as their emission lines are stronger and wider than the weak emission lines of the of stars. Furthermore, our results suggest that of stars might be more numerous than WR objects. It may be possible than clusters showing only WR objects might have also of stars as members, but they would be not easy to discover.

figure A: fistogran of the gppareat pisual agnitude of the prightest star of open clusters uith of.

In a composite color-magnitude diagram with the brightest stars of very young open olusters it appears obviously a larger percentage of (If stars in comparison to WR stars (Figure 4).

The process which originate the WR etars has been the subject of many papers. To mention the more recent one, van den Hucht et al. (1988) indicated that in general the WR stars descend from 0 -type stars with initial masses $M>25$ Mo, but for the wC stars the progenitors have masses greater, that 18 mL ; 35 Ml . These results were confirmed by Vazquez and Feinstein (1989), who found that late wn and late WC stars have initial masses greater than 50 Tho, while the early WN objects preferentially result from less massive stars. In conclusion, the WR phase would be one stage of evolution for stars more massive than $40-50 \mathrm{M} \circ$, being the of-objects a possible transition phase.

Tigure 5: fite aboolute agaitudes of of and MR stars belongias to open clusters rith both types of objects. fie letter 0 is not lacluded for the of stars.

6. Be-type stars: characteristics.

The Be-type stars are defined as "non-supergiants etars of spectral type B which display at some times hydrogen lines in emiseion" (Collins, 1987). The Balmer line $H \alpha$ is the strongest emission line, but in the cases when this line is very strong, also are seen in emission the $H B$ and $H T$ lines. These stars display sometimes irregular variations in the structure of the line profiles as much as in the intensity of the emission, which sometimes disappears. These photometric variations are displayed in short and long time scales. All these phenomena can be foterpreted ty changes in the continumm energy distribution of its circumstellar envelope. The presence of this material around the star can be explained by either one or both of the following causes: a) evolutionary effects of stars being in the core-contraction stage of the evolutionary phase following the hydrogen exhaustion of the core, b) stars which rotates

Bol. Asoc. Arg. de Astr.
very rapid，near the critical velocity at which centrifugal force balances gravitational attraction．The measurement of rotation velocities in Be stars confirms that many are rotating very fast．

The survey of the field Be stars indicates a greater maximum distribution at spectral type $B 2$（Jaschek et al．，1983），and another smaller one at about spectral type B7－8．Some emission－line（ 1 －and A－type stars are assumed to be associated to this group of stars．

7．Be－type stars in open clusters．

A list of 121 Be－type stars belonging to 50 open clusters has been compiled（Appendix C）．All they have photometric UBV data and spectral types in the MK system．In this list are only included stars which were classified as being on the main sequence or very near it according to the definition of Be stars．

The distance modulus and the mean color excess for each cluster where the Be stars are assumed to be members allow us to obtain the absolute magnitude and the intrinsic color indices of each Be star．

Clusier	Appendix B	
	ztars in open clusters	
	Nane	Classification
Cr ：21	HD 50R9F	WC6
Rut 4	H0 Espes	WN4． $5+0 \mathrm{~B}$
Cr： 73	HE 3227\％	WC8＋O9I
Eo 7	CD－454402	WNT
Fo 10	HD 92809	WC6
－r 20	Hi， $9.91: 1$	WIV： 4
ir is	Hi） 3 315	W $\mathrm{N}^{\text {？}}+\mathrm{B}$
NSU こec：	HD 97e50	WNE＋？ 5
Hogs ：	HEE 311EEG	WNG＋OSV
C：30．3／10－624	GごらTES44	WC8
Fi 20	Lこう 3 こ29	WN6
NGC	HC ：S ¢ G32	WN7
	H0 ≤ 52.270	WC7＋O5－2
C17：5－387	LSS 4065	WN7
	LSS 4CE4	WN7
？ 212	HD 157504	
$\cdots 27$	LSS 4261	$W \mathrm{NT}+\mathrm{dC7}$
	105	WC9
Bo 14	Ve2－45	WC． 9
Do 3.3	Vyi－3	WN7
NGC E871	HD ： 20918	WN4．5＋OS．Sit
Se 86	HD ： 33576	WNS＋C6
Ee 87	St 3	WO2
Ma 50	HC 219460	WN4 StBIIII

Bol．Aboc．Arg．de Astr．

Be stars mith UBV data as menbers of open clusters

Bol. Asoc. Arg. de Astr.

Bol. Asoc. Arg. de Astr.

Then, in the observed color color diagram (Figure 6) are plotted all the Be stars (Feinstein, 1987), which shows clearly that with a few exceptions all are located away of the main sequence. On the other hand, in the intrineic color-color diagram (Figure 7), many stars are situated to the right of the main sequence suggesting an additional reddening besides that of the cluster in which it is member. In an intrinsic color ($B-V$)o versus absolute magnitude Mv diagram (Figure 8), most of the stars are also to the right of the main sequence band. However, a few are to the left which may be due to various facts: a) errors in the measuremente due to the contamination from a bright nebula in the field of the star, or b) wrong corrections of the color indices or perhaps, c) very blue open clusters with stars having abnormal intrinete colors.

Tigure 6: File obserred tro-color ladices diagras for the Be atars la open clusters.

Pisure 7: The latriasic tro-celor fadices diagrap for the Be stars in opea clueters using ralues derived fron the claster data.

The additional color excesses for the stars to the right of the main sequence are assumed to be due to their circumstellar envelopes. Some of the more luminous stars are in the range up to 0.3 magnitudes farther in ($B-V$) o from the main sequence. It seems that the higher the absolute magnitude, the larger is the possible range in the color excess $E(B-V)$ due to the circumstellar material. The same conclusion becomes evident in the (U-B)o versus Mv diagram (Figure 9).

Pigare 8: Phe intriasic color-absolute pagpitude diagrap of Be stafe belongiag to open clusters. The LanS

In Figure 10 is ploted the histogram of the number of ie stars in open clueters according to the age of the cluster where these stare are located. The ages liated by Lyngs (1985) were employed. It is found that a maximum distribution corresponds to ages about log $t=$ 7.4 , that is $t=2.5 \times 10^{7}$ years old, but clusters from 10^{6} to 10^{6} yeare old have Be stars. The particular case of the young open cluster NGC 6530 with the largest number or bright Be stars is also indicated in the same figure.

IIgore 10: Phe ausber of be stars in opea clusters accordine to the ase of the cluster (byasa, 1985).

8. Conclusion

From the above analysis of the of, WR and Be stars, all they appear to be related with some state of the stars during their evolution away from the main sequence.

In Figure 11 are plotted all the bright stars which are members of open clusters, and with absolute magnitudes Mv<-5.5. The O-type stars are plotted by a number which gives the sub class corresponding to the O-type. In the same figure the WR stars are underlined, and the of-btars are inside a square. A few Be-type stars are encircled. The location of the ZAMS (Vazquez, 1989) is also drawn.

All the O, the $W K$ and of stars have intrinsic color indices smaller than ($\mathrm{B}-\mathrm{V}$) o $=-0.3$. Mostly of the very bright stars, Mv < -6.5 are of of-type. Conzequentily, the of stars would be the more common objects among the very bright stara. Also it becomes clear that these objects are nearby the ZAMS, indicating that they are the result of some processes produced after the stars leave the main sequence, or perhaps coming back from the red stage. The location of the WR stars is more difficult tho explain as the intrinsic UBV colors and magnitudes are affected by the strong emiseion lines.

In conclusion, the of- and WR-types are spectral classifications assigned to very hot and luminous stars with emission lines, but in different evolutionary gtates. On the other hand, the Be-type corresponde to leas luminous stars with smaller temperatures. It would be interesting to know if these types of emission-line stars are whether different aspects of the same phenomenon or different kind of conditions in the stare themselves.

Appendix A listtes all the of stare which are assumed to be members of open clusters at the time this paper os written (February 1990). The WR stars are included in Appendix B and the Be stars in Appendix C .

Bol. Aboc. Arg. de Astr.

 iron Vazques (1989) is also drapa.

REPERENCES

Abbott, D.C. and Conti, P.S. 1987, Ann. Rev. Astrophys. 25, 113. Collins, G.W. 1987, in Physics of Be stare, IAll Colloquium 92, eds. Slettebak, A. and Snow, T.P. (Cambridge University Press. Cambridae), p.3.

Conti, P.S. and Leep, E.M. 1974, Astrophys. J. 195, 113.
Feinstein, A. 1987, in Physics of Be stars, IAll Colloquium 92, eds. Slettebak, A. and Snow, T.P. (Cambridge University Press, Cambridge), p. 500.
Feinstein, A.; Vazquez, R.A. and Benvenuto, O. 1986, Astron. Astrophys. 159, 223.
Garmany, C.D.; Conti, P.S. and Chiosi, C. 1982, Astrophys. J. 263, 777.

Jaschek, C. and Jaschek, M. 1983, Astron. Astrophys. 117, 357.
van der Hucht, K.A.; Hidayat, B.: Admiranto, A.G.; Supelli, K.R. and Doom, C. 1988, Astron. Astrophys. 199, 217.
Lyngá, G. 1985, Catalogue of open clusters, Lund Observatory.
Lundstrom, I. and Stenholn, B. 1984, Astron. Astrophys. Suppl. 58, 163 (LS).
Maeder, A. 1984, in Observational tests of the atellar evolution theory, IAU Symposium 105, eds. Maeder, A.; Renzini, A. (Reidel, Dordrecht).
Schmidt-Kaler, Th. 1982, In Landolt-Bornstein VI/2b.
Smith, L.F.. 1968, Monthly Not. R. Astron. Soc. 140, 409.
Vazquez, R.A. 1989, Thesis, Oniversidad Nacional de La Plata.
Vazquez, R.A. and Feinstein, A. 1989, in Latin-American IAll Symposium, Gramado, Brasil, October 1989, in press.
Walborn, N.R. 1872, Astron. J. 77, 312.
Walborn, N.R. 1973, Astron. J. 78, 1067.

